No Stupid Questions
No such thing. Ask away!
!nostupidquestions is a community dedicated to being helpful and answering each others' questions on various topics.
The rules for posting and commenting, besides the rules defined here for lemmy.world, are as follows:
Rules (interactive)
Rule 1- All posts must be legitimate questions. All post titles must include a question.
All posts must be legitimate questions, and all post titles must include a question. Questions that are joke or trolling questions, memes, song lyrics as title, etc. are not allowed here. See Rule 6 for all exceptions.
Rule 2- Your question subject cannot be illegal or NSFW material.
Your question subject cannot be illegal or NSFW material. You will be warned first, banned second.
Rule 3- Do not seek mental, medical and professional help here.
Do not seek mental, medical and professional help here. Breaking this rule will not get you or your post removed, but it will put you at risk, and possibly in danger.
Rule 4- No self promotion or upvote-farming of any kind.
That's it.
Rule 5- No baiting or sealioning or promoting an agenda.
Questions which, instead of being of an innocuous nature, are specifically intended (based on reports and in the opinion of our crack moderation team) to bait users into ideological wars on charged political topics will be removed and the authors warned - or banned - depending on severity.
Rule 6- Regarding META posts and joke questions.
Provided it is about the community itself, you may post non-question posts using the [META] tag on your post title.
On fridays, you are allowed to post meme and troll questions, on the condition that it's in text format only, and conforms with our other rules. These posts MUST include the [NSQ Friday] tag in their title.
If you post a serious question on friday and are looking only for legitimate answers, then please include the [Serious] tag on your post. Irrelevant replies will then be removed by moderators.
Rule 7- You can't intentionally annoy, mock, or harass other members.
If you intentionally annoy, mock, harass, or discriminate against any individual member, you will be removed.
Likewise, if you are a member, sympathiser or a resemblant of a movement that is known to largely hate, mock, discriminate against, and/or want to take lives of a group of people, and you were provably vocal about your hate, then you will be banned on sight.
Rule 8- All comments should try to stay relevant to their parent content.
Rule 9- Reposts from other platforms are not allowed.
Let everyone have their own content.
Rule 10- Majority of bots aren't allowed to participate here. This includes using AI responses and summaries.
Credits
Our breathtaking icon was bestowed upon us by @Cevilia!
The greatest banner of all time: by @TheOneWithTheHair!
view the rest of the comments
The fact that they train on all available data and are still wrong 45% of the time shows there is zero chance of LLMs ever being an authoritative source of factual knowledge with their current approach
The biggest problem with the current LLM approach is NOT limiting the data set to factual knowledge instead of mashing it in with meme subreddits.
DeepMind keeps trying to build a model architecture that can continue to learn after training, first with the Titans paper and most recently with Nested Learning. It's promising research, but they have yet to scale their "HOPE" model to larger sizes. And with as much incentive as there is to hype this stuff, I'll believe it when I see it.
Actually, OAI the other month found in a paper that a lot of the blame for confabulations could be laid at the feet of how reinforcement learning is being done.
All the labs basically reward the models for getting things right. That's it.
Notably, they are not rewarded for saying "I don't know" when they don't know.
So it's like the SAT where the better strategy is always to make a guess even if you don't know.
The problem is that this is not a test process but a learning process.
So setting up the reward mechanisms like that for reinforcement learning means they produce models that are prone to bullshit when they don't know things.
TL;DR: The labs suck at RL and it's important to keep in mind there's only a handful of teams with the compute access for training SotA LLMs, with a lot of incestual team compositions, so what they do poorly tends to get done poorly across the industry as a whole until new blood goes "wait, this is dumb, why are we doing it like this?"
Yeah, they really need to start building RAG supported models. That way they can actually show where they’re getting their data, and even pay the sources fairly. Imagine a RAG or MCP server connecting to Wikipedia, one to encyclopedia.com, and one to stack overflow.