Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either !asklemmyafterdark@lemmy.world or !asklemmynsfw@lemmynsfw.com.
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email info@lemmy.world. For other questions check our partnered communities list, or use the search function.
6) No US Politics.
Please don't post about current US Politics. If you need to do this, try !politicaldiscussion@lemmy.world or !askusa@discuss.online
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
The succinct way of defining the topology (on NxN) is the product topology of the discrete topology(/ies). Maybe that's the discreteness you're feeling?
Axiom of Choice is not regarded as a big deal by most set theorists, but it's interesting when it comes up. The diagonalisation proof that there are undetermined games uses choice to well-order the set of strategies, so it's actually the other way around: without choice it is consistent (assuming consistency of some other stuff) that all games in this formulation are determined. This is called the Axiom of Determinacy.
The axioms in question are power set and replacement: to prove full Borel determinacy you need to apply the power set axiom infinitely many times (using the replacement axiom). These two axioms are what gives the ZFC axioms their power, really.
Set theorists nowadays I don't think debate about axioms per se. Set theory nowadays is at once somewhat pluralistic and somewhat settled (paradoxically). I'll explain a little: set theorists are basically agreed that the ZFC axioms are natural, intuitively "true" (many set theorists would not put scare-quotes there, but I would), powerful enough to do all ordinary mathematics and more, and probably consistent. They also generally agree that many large-cardinal axioms are natural and probably consistent, though there is a wide variation in whether people think they are "true"; there is not nearly so much intuition that such huge objects could exist. This is different than our intuition behind the axiom of infinity, because that axiom is actually needed to do some ordinary mathematics (though you can do without it for a lot!)
The Projective Hierarchy continues the stratification of the Borel Hierarchy even further. If you assume infinitely many woodin cardinals, then you can prove Projective Determinacy. I have heard Tony Martin being quoted as saying that "if Projective Determinacy were found to be inconsistent" (and hence infinitely many Woodin cardinals is inconsistent) "then I'd be having serious doubts about [the axiom of] Replacement." This gives you a flavour of how people think about the relationship between these concepts.
Thank you so much for taking the time to summarise and explain all this. I have really enjoyed having a little window into your remarkable world.
You're welcome!