this post was submitted on 08 Jul 2025
699 points (98.2% liked)

Technology

72669 readers
3800 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related news or articles.
  3. Be excellent to each other!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
  9. Check for duplicates before posting, duplicates may be removed
  10. Accounts 7 days and younger will have their posts automatically removed.

Approved Bots


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] brucethemoose@lemmy.world 4 points 2 days ago* (last edited 2 days ago)

A lot, but less than you’d think! Basically a RTX 3090/threadripper system with a lot of RAM (192GB?)

With this framework, specifically: https://github.com/ikawrakow/ik_llama.cpp?tab=readme-ov-file

The “dense” part of the model can stay on the GPU while the experts can be offloaded to the CPU, and the whole thing can be quantized to ~3 bits average, instead of 8 bits like the full model.


That’s just a hack for personal use, though. The intended way to run it is on a couple of H100 boxes, and to serve it to many, many, many users at once. LLMs run more efficiently when they serve in parallel. Eg generating tokens for 4 users isn’t much slower than generating them for 2, and Deepseek explicitly architected it to be really fast at scale. It is “lightweight” in a sense.


…But if you have a “sane” system, it’s indeed a bit large. The best I can run on my 24GB vram system are 32B - 49B dense models (like Qwen 3 or nemotron), or 70B mixture of experts (like the new Hunyuan 70B).